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Abstract:

This paper reports on an evaluation of the use of artificial neural network (ANN) models to forecast daily flows at multiple
gauging stations in Eucha Watershed, an agricultural watershed located in north-west Arkansas and north-east Oklahoma.
Two different neural network models, the multilayer perceptron (MLP) and the radial basis neural network (RBFNN), were
developed and their abilities to predict stream flow at four gauging stations were compared. Different scenarios using various
combinations of data sets such as rainfall and stream flow at various lags were developed and compared for their ability
to make flow predictions at four gauging stations. The input vector selection for both models involved quantification of the
statistical properties such as cross-, auto- and partial autocorrelation of the data series that best represented the hydrologic
response of the watershed. Measured data with 739 patterns of input–output vector were divided into two sets: 492 patterns
for training, and the remaining 247 patterns for testing. The best performance based on the RMSE, R2 and CE was achieved
by the MLP model with current and antecedent precipitation and antecedent flow as model inputs. The MLP model testing
resulted in R2 values of 0Ð86, 0Ð86, 0Ð81, and 0Ð79 at the four gauging stations. Similarly, the testing R2 values for the RBFNN
model were 0Ð60, 0Ð57, 0Ð58, and 0Ð56 for the four gauging stations. Both models performed satisfactorily for flow predictions
at multiple gauging stations, however, the MLP model outperformed the RBFNN model. The training time was in the range
1–2 min for MLP, and 5–10 s for RBFNN on a Pentium IV processor running at 2Ð8 GHz with 1 MB of RAM. The difference
in model training time occurred because of the clustering methods used in the RBFNN model. The RBFNN uses a fuzzy
min-max network to perform the clustering to construct the neural network which takes considerably less time than the MLP
model. Results show that ANN models are useful tools for forecasting the hydrologic response at multiple points of interest
in agricultural watersheds. Copyright  2008 John Wiley & Sons, Ltd.
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INTRODUCTION

Over the last few decades, a plethora of mathematical
rainfall–runoff models have been developed to quantify
and understand watershed-scale hydrologic processes.
Based on the description of the governing processes,
these models can be classified as either physics based or
system theoretic. Physics based model involve a detailed
description of various physical processes controlling the
hydrologic behaviour of a system. However, system the-
oretic models do not consider the physical characteristics
of the parameters; they map the data from input to output
using transfer functions. Artificial neural network (ANN)
models are example of system theoretic models that have
gained considerable popularity in recent years in describ-
ing rainfall–runoff processes.

ANNs are artificial intelligence-based computational
tools that can mimic the biological processes of a human
brain. They are considered suitable tools for large search
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spaces where human expertise is needed. They do not
require detailed knowledge of internal functions of a sys-
tem in order to recognize relationships between inputs
and outputs. For various complex nonlinear environmen-
tal problems, ANNs have an advantage over distributed
parameter models in that the data requirements are usu-
ally less, and they are more suited for long-term fore-
casting. The measured data used for ANN model devel-
opment are divided into two groups: training and testing.
First the ANN model is trained to represent the relation-
ships and processes within the measured training data set.
Once the model is adequately trained, it is able to gener-
alize relevant output for the set of input data. This output
is subsequently compared with the measured testing data
set. The model is considered to behave satisfactorily if its
performance during the testing period is similar to that
during the training period.

Many researchers have successfully utilized ANNs
to simulate rainfall–runoff processes (Hapuarachchi and
Zhijia, 2003; Zakermoshfeg et al., 2004; Anctil and Rat,
2005; Cigizoglu, 2005; Kumar et al., 2005). Example
applications include real time flood forecasting (Sudheer,
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2000; Thirumalaiah and Deo, 2000), climate change
impacts on hydrology (Clair and Ehrman, 1996), and
choice of predictor variable on simulated flow (Abra-
hart et al., 2001) among others. The two most-commonly
used ANN methods for modelling rainfall–runoff pro-
cesses are the multi layer perceptron (MLP) (Kumar
et al., 2005) and radial basis function neural network
(RBFNN) models. Many studies have reported on com-
parisons of the two models in simulating rainfall–runoff
processes (Zakermoshfegh et al., 2004; Kumar et al.,
2005). Generally both models are found to give satis-
factory performance in modelling hydrologic processes
and the performance of the model is reported to depend
upon many factors, including choice of network type and
number of input variables used. These studies have rec-
ommended that many more evaluations are needed before
a clear choice of network could be established. In addi-
tion, analyses of the published results indicate that ANNs
should be regarded as an alternative to more traditional
rainfall–runoff methods rather than a replacement (Maier
and Dandy, 2000).

One of the limitations of the previously published
ANN models is that all models were evaluated at a
single point of interest, i.e. ability of the ANN model
to predict runoff at a single gauging station, such as,
watershed outlet. Although previous studies have clearly
shown that ANN models can be used effectively to
predict rainfall–runoff processes at a single gauging
station for various temporal resolutions (Kumar et al.,
2005), the ability of these models to predict flow at
more than one gauging stations is currently not known.
While, flow predictions at the watershed outlet are very
important, often, there is great interest in predicting
flow at intermediate points or gauging stations within
a watershed. Many distributed rainfall–runoff and water
quality models such as the Soil and Water Assessment
Tool model (Arnold et al., 1998) have been developed to
meet this need. There is a need to develop and evaluate
the ability of ANN models in predicting flow at multiple
gauging stations.

The objectives of this study were to develop and
evaluate the ability of MLP and RBFNN models to
predict flow at multiple gauging stations in an agricultural
watershed. Various input vectors and their impact on
the flow prediction abilities of the two models were
evaluated.

METHODOLOGY

Multi-layer perceptron (MLP) model description

The MLP is the most popular neural network archi-
tecture in use today (Dawson and Wilby, 2001; Kumar
et al., 2005). An MLP is a network of simple neurons
called perceptrons. The perceptron computes a single out-
put from multiple real-valued inputs by forming a linear
combination according to its input weights and then pos-
sibly putting the output through some nonlinear activation

function. Mathematically this can be represented as

y D ϕ

(
n∑

iD1

wixi C b

)
�1�

where wi denotes the vector of weights, xi is the vector
of inputs (i D 1, 2..n), b is the bias, y is the output and
ϕ is the activation function. A signal-flow graph of this
operation is shown in Figure 1. The activation function is
often chosen to be the logistic sigmoid function defined
as

1/
(
1 C e�x) �2�

The MLP is usually trained using the error backpropa-
gation algorithm. This popular algorithm works by itera-
tively changing a network’s interconnecting weights such
that the overall error (i.e. between observed values and
modelled network outputs) is minimized (Govindaraju
and Rao, 2000; Sudheer, 2000).

Radial basis function neural network (RBFNN) model
description

The RBFNN developed by Powell (1987) and Broom-
head and Lowe (1988) also consists of an input layer, a
single hidden layer, and an output layer. Figure 2 shows
a typical RBFNN model. The number of input and out-
put nodes is, like the MLP neural network, determined
by the nature of the actual input and output variables.
The number of hidden nodes, however, is not determined
by trial and error; instead, the fuzzy min-max clustering
algorithm is used to decide the number of hidden nodes.
The output of the RBFNN is calculated according to

Y D
∑

W� �jjX � Cjj� �3�

Figure 1. Conceptual schematic of a typical MLP network

Figure 2. Schematic representation of a RBFNN model with one output
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where X D input value, Y D output value, ��� D radial
basis function, W D weights connecting the hidden and
output nodes; and C represents the centre of each hidden
node, which depends on the observed input data. jjX �
Cjj is the Euclidean distance between the input and
hidden nodes. Each hidden node represents a group of
input nodes that have similar information from the input
data. The transformation associated with each node of
the hidden layer is a Gaussian function (Govindaraju and
Rao, 2000; Sudheer, 2000).

Description of the study site

Measured data from Eucha watershed were used to
develop and compare the ability of both MLP and
RBFNN models to predict stream flow at multiple
gauging stations. Eucha watershed is a 1203Ð5 km2

drainage basin located with 70% in Delaware County,
Oklahoma and the remainder located in Benton County,
Arkansas (Figure 3). Elevation in the watershed ranges
from approximately 233 to 433 m above mean sea level
(Wagner and Woodruf, 1997). The watershed is located
in the Ozark Highlands and Central Plains ecoregions of
the Ozark Plateau. The land cover of the watershed was
derived from Landsat data from 1999 to 2003, which
indicated that 50% of the watershed area was forest and
40% pasture.

The USGS operates four stream gauging stations in
the watershed; these stations are: 07 191 160 (Spavinaw
Creek near Cherokee, AR); 07 191 179 (Spavinaw Creek
near Maysville, AR); 7 191 220 (Spavinaw Creek near
Sycamore, OK), and 71 912 213 (Spavinaw Creek near
Colcord, OK) and are herein referred to as Station
1, Station 2, Station 3, and Station 4, respectively
(Figure 3).

The mean temperature ranges from 3Ð3 °C in Jan-
uary to 28 °C in July in the watershed. Temperatures
greater than 38 °C occur on average 15 days per year,
temperatures above 32 °C occur on average 71 days per
year, and temperatures below freezing occur on aver-
age 85 days per year. In spring an average of 38% of

rainfall occurs, while 16% of the total rainfall occurs in
winter. Total annual precipitation averages approximately
1Ð143 m. Snowfall ranges from 0Ð127–0Ð177 m (Wagner
and Woodruf, 1997).

Input set preparation and model architecture

In this study, different models using various combi-
nations of input data sets were developed and compared
for their ability to make flow predictions at four gaug-
ing stations for 2002–2004. The input variables used
in models included various combinations of daily pre-
cipitation (inches) and antecedent flow at the gauging
stations at which flow predictions were made as well as
flow at hydrologically connected upstream gauging sta-
tions (Table I). Daily stream flow values and daily rainfall
totals for each of the four gauging stations located in
the watershed (Figure 3) were obtained from the USGS.
Figure 4 shows the approach taken to develop the ANN
models for flow predictions at the four gauging stations.
The model development started at the most upstream site
(Station 1) and proceeded in the downstream direction.
Predicted flows from upstream sites were used as an input
to the model.

The goal of an ANN is to generalize a relationship of
the form

Ym D f�Xn� �4�

where Xn is an n-dimensional input vector consisting
of variables x1, . . . , xi, . . . , xn; Ym is an m-dimensional
output vector consisting of the resulting variables of
interest y1, . . . , yi, . . . , ym. In rainfall-runoff process,

Table I. Input scenarios used to develop and test ANN models
for flow prediction in Eucha watershed

Scenario number Input variable

1 Precipitation (P)
2 P, antecedent P
3 P, antecedent P, antecedent Flow (F)

71912213

7191220
7191179

7191160

Oklahoma Arkansas

Lake
Eucha

ArkansasOklahoma

0 3 6 12 18 24
Kilometers

N

Figure 3. Location of the Eucha watershed with major streams and gauging stations that were used in developing and comparing ANN models
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Output:
daily flow

Station 1 Station 2 Station 3 Station 4

Input:
precipitation,

antecedent daily
flow at Station 1

Output:
daily flow

Output:
daily flow

Output:
daily flow

Input:
precipitation,

antecedent daily
flow at Station 2

Input:
precipitation,

antecedent daily
flow at Station 3

Input:
precipitation,

antecedent daily
flow at Station 4

Figure 4. Approach taken to develop ANN models for flow predictions at four gauging stations in the watershed

Figure 5. Schematics of the procedure used for determining the optimum neural network schema

values of xi may be rainfall-runoff values with different
lags and the value of yi is generally the next day’s
flow. However, the number of antecedent rainfall–runoff
values that need to be included in the vector Xn is
watershed specific and may not be known a priori.
Determining the number of rainfall-runoff parameters
involves finding the lags of rainfall-runoff that have
a significant influence on the predicted flow. These
influencing values corresponding to different lags can be
very well established through statistical analysis of the
data series.

Several statistics such as cross–correlation, autocorre-
lation and partial autocorrelation were generated to evalu-
ate rainfall and runoff values to be included in the model.
The cross-correlation is computed at several different lags
and shows the degree of linear relationship between the
data values. The autocorrelation describes the correlation
between all the pairs of points in the time series with a
given separation in time or lag. A partial autocorrelation

is the autocorrelation of a series with itself under station-
ary conditions, while controlling for the effect of inter-
vening lags. A partial autocorrelation reveals the precise
autocorrelation of a series with itself without the con-
founding effects of intervening lagged autocorrelation.
In this analysis, many networks were trained with var-
ious combinations of rainfall corresponding to different
lags (varying from 1 to 10 days) and runoff lags (varying
from 1 to 8 days).

After inputs were determined, the MLP and RBFNN
models were optimized to obtain the best possible pre-
diction model. Figure 5 shows the procedure used in this
study. The number of nodes was changed in the hidden
layer to determine the optimum number for the MLP and
RBFNN models. The momentum rate was kept constant
with the optimized number of hidden layer or prototype
layer nodes and the learning rate was varied to determine
the optimum learning rate parameter. The learning rate
was kept constant with the optimized values of hidden
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layer or prototype layer nodes and the momentum rate
was changed to determine the optimum momentum rate
parameter.

The above mentioned steps were followed for MLP
and RBFNN models to determine the optimum number
of nodes, learning rate and momentum rate. In this study
the backpropagation algorithm, delta learning rule and
the sigmoid transfer function were used for model devel-
opment. Learning and momentum rates were changed
between 0Ð1 and 0Ð9. RMSE, CE and R2 were used to
evaluate the performance of the model for each station.
The ANN was trained using the error backpropagation
algorithm. This popular algorithm works by iteratively
changing a network’s interconnecting weights such that
the overall error (i.e. between observed values and mod-
elled network outputs) is reduced.

The data were subdivided into two sets: a first set to
train the model (training set) and a second set to test
(testing set) the model. For the daily time step model,
2002 to 2003 data were used for training and the data
for the year 2004 for testing. The total data consisting
of 739 patterns of input–output vector were divided into
two sets: 492 patterns for training, the remaining 247
patterns for testing. The software package used for ANN
simulations in this study was Neuralworks Professional
II Plus (Neuralware, 2003).

Model evaluation criteria

Multiple performance criteria have been used by
researchers to evaluate the adequacy of ANN models
in simulating rainfall–runoff processes. The most com-
monly employed error measures are the RMSE and
coefficient of efficiency (Solomatine and Dulal, 2003).
The Nash–Sutcliffe coefficient of model efficiency (CE)
(Nash and Sutcliffe, 1970) and the percentage of total

error were used by Hapuarachchi and Zhijia (2003). Zak-
ermoshfegh et al. (2004) used the sum of square error
(SSE) and RMSE. Abrahart et al. (2001), and Thirumala-
iah and Deo (2000) used optimization algorithms such
as cascade correlation, and genetic algorithms. The three
numeric error measures used in this study were RMSE,
R2 and CE defined as

RMSE D

√√√√√√
n∑

iD1

�QP � QO�2

n
�5�

R2 D




n∑
iD1

�QO � QO��QP � QP�

√∑
�QO � QO�2

∑
�QP � QP�2




2

�6�

CE D 1 �

n∑
iD1

�QO � QP�2

∑
�QO � QP�2

�7�

where QP are the n predicted values (I D 1 to n), QO

are the n observed values, QO is the mean of n observed
values, and QP is the mean of n predicted values.

RESULTS AND DISCUSSION

Data analysis for model input preparation

The cross-correlation, autocorrelation, and partial auto-
correlation functions were analysed for the four USGS
gauging stations. The cross-correlation statistics of the
precipitation and flow series are presented in Figure 6
and were found to initially increase with lag for all gaug-
ing stations. The greatest values were obtained at a lag 2
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Figure 6. Cross-correlation plots of the daily precipitation-flow series of Eucha watershed for four USGS gauging stations
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(2 days) for Stations 1 and 2 and lag 1 (1 day) for Sta-
tions 3 and 4. Lag time for each station is a function of the
runoff time of concentration and depends on watershed
geophysical characteristics such as watershed area, slope,
shape, flow length, and land use. The lag time for each
station was different because of differences in geophysi-
cal characteristics of the contributing subwatersheds.

The autocorrelation function and the corresponding
95% confidence intervals from lag 0 to lag 8 (0 to
8 days) were estimated for the flow series (Figure 7). The
autocorrelation function showed a significant correlation
up to lag 5 for Station 1and 2, lag 6 for Station 3 and
lag 7 for Station 4, at the 95% confidence level, and
thereafter, fell within the confidence interval. The gradual
decaying pattern of the autocorrelation indicates the
presence of a dominant autoregressive process. Similarly,
the partial autocorrelation function and corresponding
95% confidence limits were estimated for lag 0 to
lag 8 (Figure 8). The partial autocorrelation function
showed significant correlation up to lag 1 (1 day) for all
stations and, thereafter, fell within the confidence band.
The rapid decaying pattern of the partial autocorrelation
function confirms the dominance of the autoregressive
process, relative to the moving-average process. The
input variables are determined by autocorrelation function
and partial autocorrelation function analyses on flow
values, and cross-correlation function analysis between
precipitation and flow values. This quantitative analysis
of the data series relieves the modeller of a long trial- and-
error procedure in identifying the appropriate input vector
that best represents the process in the watershed. The

above analysis of auto and partial correlation coefficients
suggested incorporating flow values of up to 1 day lag in
the input vector to the network for all stations.

The coefficient of determination (R2) values for the
MLP model for training ranged from 0Ð001 to 0Ð02 for
the four stations for input scenario 1 when only current
day precipitation was used to make flow predictions.
Similarly, the range of R2 was 0Ð007 to 0Ð08 when
the current day precipitation and antecedent precipitation
derived from the aforementioned analyses were used
for input scenario 2 for model training. A very small
R2 values for all four gauging stations for these two
scenarios indicated that precipitation alone could not be
used to make accurate flow predictions using the MLP
model. However, when antecedent flow was also used
in the input matrix the range of R2 values dramatically
increased to 0Ð92–0Ð95 for all four gauging stations. The
best performance based on the RMSE, R2 and CE was
achieved for scenarios 3, with consistently higher R2 and
lower RMSE than other scenarios during training of the
MLP model.

It should be noted that RBFNN models were also
trained using the input vectors that were identified from
the above analysis. Other scenarios were not considered,
as they were unable to improve the performance of
the MLP and RBFNN models. We have not presented
those results here for brevity. To have a true comparison
with MLPs, the RBFNN models were developed using
scenario 3 data sets that gave the best flow predictions
for the MLP model. Comparison of MLP and RBFNN
models are discussed in the following sections.
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Figure 7. Autocorrelation plot of the flow series at four USGS gauging stations in the Eucha watershed
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Figure 8. Partial autocorrelation plots of the flow series at four USGS gauging stations in the Eucha watershed

Table II. Performance of MLP and RBFNN models simulating flow at various gauging stations for input scenario 3

MLP RBFNN

Training Station 1 Station 2 Station 3 Station 4 Station 1 Station 2 Station 3 Station 4

R2 0Ð92 0Ð93 0Ð95 0Ð94 0Ð93 0Ð81 0Ð79 0Ð82
RMSE 0Ð155 0Ð217 0Ð184 0Ð348 0Ð15 0Ð547 0Ð806 0Ð975
CE 0Ð918 0Ð923 0Ð952 0Ð935 0Ð921 0Ð806 0Ð789 0Ð818

Testing
R2 0Ð86 0Ð86 0Ð81 0Ð79 0Ð6 0Ð57 0Ð58 0Ð56
RMSE 0Ð226 0Ð203 0Ð4 0Ð398 0Ð455 0Ð573 0Ð676 0Ð673
CE 0Ð789 0Ð812 0Ð729 0Ð664 0Ð575 0Ð471 0Ð544 0Ð431

Overall
R2 0Ð9 0Ð91 0Ð92 0Ð91 0Ð85 0Ð76 0Ð75 0Ð79
RMSE 0Ð128 0Ð181 0Ð264 0Ð533 0Ð254 1Ð234 2Ð326 3Ð06
CE 0Ð891 0Ð905 0Ð917 0Ð91 0Ð846 0Ð752 0Ð754 0Ð785

Comparison of MLP and RBFNN models

The values of R2, CE and RMSE for scenario 3 at each
station are presented in Table II. The R2 for the MLP
model ranged from 0Ð92 to 0Ð95 for the training data set
and from 0Ð79 to 0Ð86 for the testing data set. Similarly,
RMSE ranged from 0Ð155 m3 s�1 to 0Ð348 m3 s�1 for
the training data set and from 0Ð203 m3 s�1 to 0Ð4 m3 s�1

for the testing data set. CE ranged from 0Ð9178 to 0Ð9516
for the training data set and from 0Ð6635 to 0Ð8121 for
the testing data set. It should be noted that although
the predicted flows at upstream gauging stations were
used as an input to the downstream flow predictions
(Figure 3), the greatest R2 was obtained for gauging
Station 3 for the training data set, and gauging Station
2 and 1 for the testing data set, showing the robustness

of the model in adequately simulating flow at multiple
gauging stations within the watershed. In this study all
four gauging stations were hydrologically connected, i.e.
flow from Station 1 directly affected flow at Station
2, 3 and 4. When ANN models are used to make
flow predictions at multiple gauging stations that are
hydrologically connected, attention should be paid to the
accuracy of the model predictions at upstream stations. It
is possible that a poor performance at upstream stations
may lead to error propagation at the downstream stations.

The R2 values for the RBFNN model ranged from
0Ð79 to 0Ð93 for the training data set and from 0Ð56
to 0Ð60 for the testing data set with the greatest R2

obtained at gauging Station 1. The RMSE ranged from
0Ð150 m3 s�1 to 0Ð975 m3 s�1 for the training data set
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and from 0Ð455 m3 s�1 to 0Ð676 m3 s�1 for the testing
data set. The CE for the RBFNN model ranged from
0Ð431 to 0Ð921 during training and testing. At Station
1, the RBFNN models outperform the MLPs during
training; however, they fail to preserve their performance
during testing, implying poor generalization properties
for RBFNN models. Unlike MLPs, RBFNN networks
do not have any associated connections between input
hidden nodes, which give a weighted input to each hidden
node before the nonlinear transformation takes place.
Thus, in an RBFNN, for any point in the input space
the response of the closest basis function plays a major

role in the output of the network. Consequently, a trained
RBFNN network’s output will be accurate only if the
input pattern falls close to the centre of the basis function,
and hence exhibits poor generalization properties (Moody
and Darken, 1989). It can be seen from Table II that the
MLP model has higher R2, CE and lower RMSE than the
RBFNN model at Stations 2, 3 and 4 during training and
testing.

The results in Table II emphasize the importance of
not relying on any single error measure to assess model
performance. Figure 9 shows scatter plots of predicted
and observed data during the testing period for scenario

Figure 9. Scatter plots of observed versus MLP and RBFNN model flow during testing for the four stations
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Figure 10. Hydrographs of time versus flow during training and testing for the four stations

3 for all stations for both MLP and RBFNN models.
Scatter plots between measured and predicted flow data
serve as a useful visual aid to assess a model’s accuracy.
The closer the scatter points are to the line of the
best fit, the better the model. Figure 9 shows that the
MLP models had smaller scatter around the best fit
line than the RBFNN models for all four gauging
stations. Figure 10 shows the corresponding hydrographs
for the four stations during training and testing. These

plots, when combined with results shown in Table II,
indicate that model performance for the full range of
flow data evaluated in this study was superior for the
MLP model, as indicated by greater R2 and CE and
lower RMSE values compared with those for the RBFNN
model. Both models underpredicted high flow events
and over predicted low flow events at some of the
gauging stations (Figures 9 and 10). The cause of these
discrepancies needs to be further evaluated to improve
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model performance. However, the overall results confirm
that the ANN model performed well simulating daily
stream flow based on daily precipitation, antecedent
precipitation and antecedent flow.

One performance criterion for which the RBFNN
model worked better than the MLP was the training
time. The observed training time of the MLP was around
1–2 min, whereas the training time of the RBFNN was
5–10 s on a Pentium IV processor running at 2Ð8 GHz
with 1 MB of RAM. The difference occurs because of
clustering methods used in RBFNN where a fuzzy min-
max method is used to perform the clustering to construct
the neural network. These result in faster training of
the RBFNN network compared with the MLP model.
However, with the availability of fast computers, this
should not be a significant concern affecting model
selection for flow predictions at multiple gauging stations.

SUMMARY AND CONCLUSIONS

The objectives of this study were to develop and compare
ANN models to forecast daily flows at multiple gauging
stations in the Eucha watershed in north-west Arkansas
and north-east Oklahoma. MLP and RBFNN models were
developed and their abilities to predict stream flow at
four gauging stations were compared. The input vector
selection for both models involved quantification of the
statistical properties such as cross-, auto- and partial
autocorrelation of the data series that best represented the
hydrologic response of the watershed. The MLP model
testing resulted in R2 values of 0Ð86, 0Ð86, 0Ð81 and 0Ð79
at the four gauging stations. Similarly, the R2 values for
the RBFNN model were 0Ð60, 0Ð57, 0Ð58, and 0Ð56 for
the four gauging stations. The MLP model performed
better for forecasting daily flow at multiple gauging
stations in the watershed. Based on statistical analysis
the MLP outperformed the RBFNN in terms of the
RMSE, CE and R2 during training and testing. However,
additional research on watersheds with heterogeneous
hydrologic characteristics is needed to establish the
model of choice as the RBFNN model is reported to
have superior performance in different studies (Fernando
and Jayawardena, 1998; Sudheer, 2000) primarily in
terms of less time required for model development and
training.

The training time was in the range 1–2 minutes for
MLP, and 5–10 seconds for RBFNN on a Pentium
IV processor running at 2Ð8 GHz with 1 MB of RAM.
The difference in model training time occurred because
of the clustering methods used in the RBFNN model.
The RBFNN uses a fuzzy min-max network to perform
the clustering to construct the neural network which
takes considerably less time than the MLP model. The

results obtained from this study indicate that ANN
models are useful tools for forecasting the hydrologic
response at multiple points of interest in agricultural
watersheds.
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